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Background 

 

A peripherally inserted central catheter (PICC) is a thin, flexible plastic tube that provides medium-term 

intravenous access for medicine, fluid, and chemotherapy administration. These are inserted into arm 

veins and threaded into the patient until the catheter tip reaches a large vein near the heart. As 

malpositioned PICCs can have potentially, serious complications, final position of all PICCs are always 

confirmed with a chest radiograph immediately after insertion. This radiograph requires timely and 

accurate interpretation by a highly-trained domain expert in medical imaging interpretation – a 

Radiologist. Although the error rate for radiologists misinterpreting PICC location is likely extremely low, 

delays in interpretation can be substantial—particularly when this radiograph is one of many to be 

interpreted with imaging studies from many different modalities and different patients also requiring 

diagnostic attention. However, machine intelligence techniques can help prioritize and triage the review 

of radiographs to the top of a radiologist’s queue, improving workflow and turn-around-time (TAT). Such 

prioritization does not require high specificity, but rather high sensitivity; they should alert the 

radiologist to all potentially important radiographs requiring immediate attention with a low false 

negative rate. 

 

Computer Aided Detection (CAD) is the current FDA-approved approach to aid radiologists in the 

interpretation of medical images and decrease misses. Recently new advances in deep learning 

technology applied to medical imaging have showed much promise in the development of new tools to 

aid in image interpretation [3], including improving the performance of CAD with deep convolutional 

neural networks (DCNN). DCNNs can automatically extract salient features from vast datasets and 

classify data into output classes with the extracted features. DCNNs have been applied to many medical 

image analyses, including automatic pulmonary nodule detection [4], cerebral microhemorrhage 

detection [5] and brain tumor segmentation [6]. However, a system for PICC line detection has not been 

previously emphasized in the literature. 

 

In this paper, we propose a deep learning driven platform to assist radiologists in rapidly detecting and 

confirming PICC placement, with emphasis on incorrect placement accelerating recognition and avoiding 

serious complications. We first developed a preprocessing pipeline to reduce numerous false positives 

due to the inherent noise in radiographs to isolate the region of interest, while keeping a low false 

negative rate. We then utilized a patch-based approach that splices an image into smaller image 

patches, classifies them with a trained model, and creates a result image annotated with the trajectory 

of the PICC and the tip location.  

 

Evaluation 

 

800 DICOM images containing PICCs were retrospectively collected from 01/01/2009 to 01/01/2016 and 

anonymized for compliance with HIPAA. The collected images vary considerably in intensity and 



contrast, as well as in the locations of foreign objects, such as PICCs, electrocardiogram (ECG) leads, 

surgical clips, and pacemaker leads (Figure 1). The preprocessing pipeline includes image normalization 

through a bilateral filter for denoising and edge enhancement while histogram equalization improved 

contrast while minimizing excess noise in the radiographic images. While all radiographs underwent the 

same image preprocessing, 600 were initially used for training and 200 were reserved for testing (Figure 

2). After normalization, the original high-resolution images—averaging 2801x3195 pixels or 350mm x 

400mm—were automatically cropped into 96x96 pixel patches. These patches were then manually 

classified as containing one of ten classes, including background, vertebral body, ECG, shoulder, lung, 

other lines, PICC, rib, tissue, and other object (Figure 3). The sampled image patches constitute a 

balanced dataset of approximately 70K samples per class. In order to avoid overfitting and improve 

generalizability of the DCNN, data augmentation was performed by horizontally flipping and rotating 

images from -90 to 90 degrees in 30 degree increments. 
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AlexNet [7]—a validated DCNN—was chosen as our network topology, because it offers sufficient 

performance to learn generic and complex features using variable convolution filters (11x11, 5x5, or 

3x3). Furthermore, pre-trained instances of the network are readily available, allowing us to exploit 

transfer learning [12, 13, 14] to improve the performance of our network. After initializing the 

parameters of the network with the ImageNet pre-trained model of AlexNet [9] from Caffe Zoo [10], we 

carefully fine-tuned all layers of the network using a stochastic gradient descent optimizer with a mini-

batch size of 128, a base learning rate of 0.001, a momentum term of 0.9, and decreased the learning 

rate by three steps by a factor of 10 for a stable convergence of the loss function. 25% of sampled image 

patches were held out as a validation dataset to select the best model out of each epoch. The trained 

network achieved 95.32% validation accuracy when classifying objects from a given patch, sufficient for 

our purposes. 

 

After an image has been completely segmented into one of the ten classes, a PICC mask was 

reconstructed using the occlusion method to identify the significant pixels in the PICC patches. This 

approach generated many false positives at bone edges, particularly ribs and vertebral bodies. However, 

by using the Generalized Hough Transform [11], only curvilinear shapes can be identified, filtering out 

many false-positives. The refined PICC mask was then generated by merging significant nearby contours 

and applied to the original image to highlight the trajectory of PICC line and compute the catheter tip 

location.  

 

Figure 4 presents the accuracy of our proposed algorithm based on distance between predicted and 

ground-truth catheter tips. Statistics are expressed in pixels and millimeters based on radiographic pixel 

spacing (1 pixel = 0.125 mm). The absolute distances for 200 test images ranged from 4.0 (0.5 mm) to 

97.87 pixels (12.23 mm) with a mean of 37.29 pixels (4.66 mm) and a standard deviation of 22.40 pixel 

(2.8 mm). 

 

Figure 4 

 
 

Figure 5 details three examples of output images. Figure 5 (b) highlights the trajectory of the PICC and 

annotates the location of the catheter tip in red with an orange bounding box surrounding the tip.  

 

 



Figure 5 

 
 

Figure 5 (c) reveals the general case of annotating multiple external objects, including PICCs, ECG leads, 

lines, tubes, and surgical hardware, each highlighted in four different colors for faster preliminary 

interpretation by non-expert readers. 

 

Figure 6 reveals examples of poor algorithmic performance. PICCs are challenging to localize when 

occluded by other similar appearing objects (Figure 6 (a)). Bone edges often also confuse the system, 

causing occasional false positives or negatives (Figure 6 (b). The two examples imply that our model can 

be further improved with a larger training dataset. The system can also fail when only a part of the PICC 



is visualized (Figure 6 (c)) or simply not exist at all (Figure 6 (d)). By combining the existing system with 

Our algorithm can determine the exceptional cases according to the predicted locations of PICC line.  

 

Discussion 

 

Chest radiography performed for PICC tip detection is a frequent, routine exam in the care of sick 

patients, and it is among the mundane but necessary tasks required of radiologists. While a highly 

trained radiologist can identify a PICC in 2-4 seconds, triaging which study out of a long list needs to be 

read next could accelerate recognition of malpositioned catheters. This proposed deep learning system 

could be implemented directly on the imaging device or as part of the PACS. The predicted PICC location 

could then be triaged to “correct” vs “incorrect”, allowing automated list triage and improving patient 

safety. Further automated quantitative measurements of PICC deviation from the “ideal” allows for 

more rapid interpretation.  

 

This algorithm can be generalized to detect the wide variety of lines and tubes used in the clinical arena, 

including endotracheal, tracheostomy, pleural, and nasogastric tubes; central venous and pediatric 

vascular lines; pacemakers, stimulators, or pumps; and automatically insert wording on their location 

into the report. This advance could further help triage malpositioned devices, increase patient safety, 

reduce turnaround time, and streamline the tedious process of enumerating the many access devices 

for every dictation.  

 

Conclusion 

 

We have proposed a deep learning system to provide automated PICC course and tip detection. The 

predicted location of PICC tip is 4.66 mm from ground truth on average with a standard deviation of 2.8 

mm. The system is generalizable to include many other types of vascular access and therapeutic support 

devices, allowing for triage and prioritization of radiograph interpretations for suspiciously 

malpositioned lines. Ultimately, this system can help improve patient safety by speeding recognition of 

complications, reducing turnaround time, and enhancing radiologist productivity.  
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