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A Comprehensive Guide to Preparing Medical Imaging Data for AI: A SIIM 
Survey 
 
Sanaz Vahdati, MD, Postdoctoral Research Fellow, Mayo Clinic; Bardia Khosravi, MD, MPH, MHPE;  
Elham Mahmoudi, MD, MPH; Pouria Rouzrokh, MD, MPH, MHPE; Shahriar Faghani, MD; Mana Moassefi, MD;  
Aylin Tahmasebi, MD; Katherine Andriole, PhD, FSIIM; Peter Chang, MD; Keyvan Farahani, PhD;  
Mona G. Flores, MD; Judy W. Gichoya, MD, MS; Sina Houshmand; MD; Bradley J. Erickson, MD, PhD, CIIP, FSIIM 

 
 

Introduction  
The increasing rate of Artificial Intelligence(AI) model development to address numerous clinical challenges has 
escalated the need to prepare high-quality clinical imaging data. Optimal data preparation is of paramount 
importance since it leads to the development of standard, reproducible AI models and alleviates biases. The ideal 
tool should assist developers and researchers in preparing the data in the fastest and most well-curated manner. To 
achieve this, one should be aware of existing tools with core features that provide most of the tasks at hand. 
Becoming familiar with existing tools can be beneficial for not only selecting the best tool for the assigned task (e.g., 
detection, segmentation, or classification) but also can point out the possible limitations the user might face if 
starting to work with the wrong tool.  
 

Hypothesis  
The current study was designed to collect the most used tools for data curation prior to using them to train AI 
models.  
 

Methods  
A questionnaire including the tool’s name, description, and core features was prepared and distributed among 54 
active members of the Society of Imaging Informatics(SIIM) from 26 medical informatics centers. Duplicates, 
general answers not describing a specific tool, and institutional custom (not publicly available)-based applications 
were excluded, resulting in a total of 30 tools. The tools were investigated based on the core features, cloud 
features, input data, data curation including de-identification functions and data annotation, workflow, federated 
learning support, and data storage. We categorize different steps of data preparation with a comprehensive 
collected list of tools that are designed for each task.  
 

Results 
Tools with their extracted core features are described in the attached tables for data identification, data curation, 
and data annotation and labeling. Image normalization, data conversion, input and output data, labeling and 
segmentation, and auto-segmentation application are some of the main tasks depicted in our findings. It is noted to 
mention that data curation is defined as the process of selecting and organizing data from the time it is acquired to 
the point it is ready for use by AI; Thus, data de-identification and annotation can be considered as part of data 
curation. As depicted, several tools may provide more than one of the aforementioned tasks.  
 

Conclusion  
We propose a comprehensive guideline of stages for data curation for AI applications and present lists of tools in 
each step for optimizing the decision-making.  
 

Statement of Impact  
Providing a list of tools for different steps of medical imaging data preparation for AI model development.  
 
 
 
 
 



Table1. Tools used for data de-identification.  
 
 

 
 
 
 
Table2. Tools used for data curation with their specific core features. 
 



 
Table3. Tools used for data annotation with their specific core features.  
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renderi
ng  

Co-
registration  

classification  

MD.ai  ✓  Dcm/D
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n  

  ✓      ✓  

MONAI  
Label  

Both  DCM, 
NiFTI/D
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NiFTI  
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n  

✓        ✓  

3D slicer  Both  DCM, 
NiFTI/D
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NiFTI  
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✓    ✓  ✓    

http://md.ai/
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    ✓  ✓    
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    ✓  ✓      ✓  
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Care to ExplAIn? Differential Impacts of Explanation Types on Physician 
Trust in AI 

Drew Prinster, PhD Candidate, Johns Hopkins University; Amama Mahmood; Suchi Saria, PhD; 
Jean Jeudy, MD; Cheng T. Lin, MD;  Chien-Ming Huang, PhD; Paul H. Yi, MD, MS

Introduction 
Although AI is increasingly used in clinical practice, few studies have evaluated how different AI explanation 
methods and other design considerations like AI uncertainty communication, might impact physician diagnostic 
performance or trust in AI advice. We evaluated how AI explanation types, confidence levels, and correctness 
would impact physician diagnostic performance for chest x-ray (CXR) diagnosis.  

Hypothesis 
AI explanation types will impact physician diagnostic performance and trust in AI advice. 

Methods 
We conducted a prospective randomized experiment of 220 physicians (132 radiologists, 88 internal or emergency 
medicine physicians) who were asked to evaluate 8 CXR cases (Fig.1). We evaluated how AI explanation types, 
confidence levels, and advice correctness impact diagnostic performance, confidence in final diagnosis, and 
perception of AI advice. The between-subjects factor was the AI explanation type: either a “local” explanation that 
localized key CXR image features with a bounding box, or a “global” explanation that compared a given CXR image 
to a prototypical example of the CXR in question. AI advice correctness and AI confidence were varied as within-
subjects factors. We analyzed the data using appropriate generalized linear mixed-effects (GLME) models. Finally, 
we evaluated if our key findings can be understood through a ‘novel ‘simple trust” mechanism.  

Results 
Local AI explanations increased physician diagnostic accuracy compared to global AI explanations when AI advice 
was correct (Fig.2). Furthermore, AI confidence and task expertise modulated the effect of explanation type on 
diagnostic accuracy. Physicians used local AI explanations more efficiently (time required for diagnosis) than global 
AI explanations, though explanation type did not impact physician’s subjective perceptions of AI advice or their 
confidence in their final diagnosis. Lastly, we identified a potential explanation for our results via a novel heuristic for 
“simple trust”—which can be roughly understood as reliance without verification—that suggests that physicians tend 
to more quickly align their diagnosis with local AI explanations than global AI explanations, regardless of AI advice 
correctness.  

Conclusion 
AI explanation types impact physician diagnostic performance and trust in AI advice more than the physicians 
themselves are aware of. AI explanation types substantially impact multiple behavioral measures (diagnostic 
accuracy, efficiency, and simple trust in AI advice). AI developers and clinicians alike should carefully consider the 
differential impacts of AI explanation types on diagnostic performance and trust when designing and using AI 
systems.  

Statement of Impact 
AI Explanation mechanisms impact how physicians perform in CXR diagnosis and their trust in AI advice, which 
need to be considered during clinical deployment of AI.  



 
Figure 1: Illustration of experimental setup and procedure: (A) Participating physicians first view the X-ray case 
without AI advice. (B) Once ready, physicians view AI advice including AI explanation and AI confidence, with 
design conditions applied here. (C) Physicians then decide whether or how to use AI advice, finalize their diagnosis, 
provide their confidence, and rate AI advice usefulness. (D) Physicians then repeat for 8 X-ray cases. 
 

 
 
Figure 2: Main results for diagnostic accuracy outcome: Interaction plots for significant interaction effects among 
experimental variables (addressing primary research questions) for the outcome of marginal-mean estimated 
diagnostic accuracy. Figure 2A displays the interaction plot for explanation type × AI advice correctness (interaction 
coefficient β = 1.092, p = .001 [p_adj =]) from the mixed-effects logistic regression model, demonstrating that the 
impact of AI advice correctness on physician diagnostic accuracy depends on the type of explanation used by the 
AI: In particular, local AI explanations improve diagnostic accuracy relative to global explanations when AI advice is 
correct (β = 0.859, p < .001), but we cannot conclude if the explanation type alters the impact of incorrect AI advice 
on diagnostic accuracy (β = −0.234, p = .388). Only among the correct AI advice condition, figures 2B and 2C 
display the interaction plots for explanation type × AI advice confidence × physician task expertise (three-way 
interaction coefficient β = −1.034, p = .012), where radiologists are considered task experts and non-radiologists are 
non-task experts. In particular, figure 2B illustrates that for non-task experts given correct AI advice, local 
explanations improve physician diagnostic accuracy relative to global explanations when AI confidence is high 
(figure 2B, β = 1.598, p < .001), but we do not observe such a difference when AI confidence is low (figure 2B, β = 
0.065, p = .852 [p_adj =]). In figure 2C, on the other hand, we see that for task experts given correct AI advice, local 
explanations improve diagnostic accuracy relative to global explanations when AI confidence is low (figure 2C, β = 
1.115, p = .009), but we do not observe such an effect when AI confidence is high (figure 2C, β = 0.578, p > .05). 
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Evaluating the Utility of Self-Configuring Capsule Networks for Brain Image 
Segmentation 
 

Durga Sritharan, Postgraduate Associate, Yale School of Medicine; Sanjay Aneja, MD; Arman Avesta, MD, PhD; 

Rahul D'Souza; Mariam Aboian, MD, PhD; MingDe Lin, PhD 

 

 

Introduction  

Although a number of deep learning techniques leveraging convolutional neural networks have shown promise for 

anatomical segmentation, they often require significant amounts of computational memory and training data. 

Capsule networks represent an alternative and potentially more efficient method for image auto segmentation. We 

sought to evaluate the utility of self-configuring capsule networks for diagnostic image segmentation.  

 

Hypothesis  

We hypothesized that self-configuring capsule networks would be a more computationally efficient method for 

image segmentation while maintaining high fidelity.  

 

Methods  

Using a dataset of 755 MRIs for patients diagnosed with high grade gliomas across multiple facilities within a single 

healthcare system we trained a self configuring capsule network for tumor identification. Specifically, self-

configuring capsule networks were trained to segment tumor enhancing core on the post-T1 contrast sequences. 

603 MRIs were used for training, 76 MRIs used for validation, and an additional 76 MRIs were used as a blinded 

test set. The self-configuring paradigm of the capsule network algorithm included automated adjustments for slice 

thickness, MRI imaging parameters, and computational resources available for training. Self configuring capsule 

network performance was compared to traditional convolutional U-NET based auto-segmentation techniques. Dice 

scores were used to evaluate segmentation performance. Model convergence time, deployment time, and model 

size (GB) were used to evaluate computational efficiency.  

 

Results 

The self-configuring capsule networks showed high fidelity in tumor delineation among gliomas within our dataset. 

The segmentation accuracy between self-configuring capsule networks was similar to traditional convolutional U-

NET based auto-segmentation techniques (89% vs 88%, p = 0.27). Self-configuring capsule networks had notably 

shorter convergence time during training compared to U-NET based models (11 hours vs 38 hours, p < .001) and 

similar deployment time (4 min vs 3.5 min, p=.15). Self-configuring capsule networks required significantly less 

memory when compared to traditional U-NET based segmentation techniques (5 GB vs 31 GB, p < .001).  

 

Conclusion  

Self configuring capsule networks are a promising computationally efficient method for diagnostic image 

segmentation tasks with performance that rivals traditional convolutional U-NET based deep learning auto 



segmentation techniques. Further studies can help elucidate the potential utility of these novel algorithms within 

clinical practice.  

 

Statement of Impact  

Self-configuring capsule networks are a novel method for image auto segmentation which have the advantage of 

exquisite computational efficiency compared to alternative deep learning based methods. As the number of 

algorithms potentially being deployed for image analysis increase, there is an increasing need for more 

computationally efficient methods which are scalable across all settings.  
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Exploring Interpretation Maps as a Path to Discover Radiogenomics 
Biomarkers: A Call for Rethinking 
 

Shahriar Faghani, MD, Postdoctoral Research Fellow, Mayo Clinic Rochester; Mana Moassefi, MD; 

Gian Marco Conte, MD, PhD; Bradley J. Erickson, MD, PhD, CIIP, FSIIM 

 

 

Introduction  

Deep learning (DL) has demonstrated promising results in predicting genetic status based on imaging data. 

However, these models often lack interpretability. Integrated gradients (IG) is a technique that assigns importance 

scores to pixels, providing insight into the model's decision-making process and the contribution of each pixel to the 

output. This study explores the role of IG maps in interpreting the classification of the isocitrate dehydrogenase 

(IDH) gene and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in glioblastomas 

using MRI.  

 

Hypothesis  

Interpretation maps can facilitate the discovery of new imaging biomarkers for radiogenomics.  

 

Methods  

We analyzed the publicly available The University of California San Francisco Preoperative Diffuse Glioma MRI 

(UCSF-PDGM) dataset, which includes various MRI sequences and corresponding tumor genetic profiles. We 

trained 3D-Densenet121 models using these sequences independently and in combination to predict IDH mutation 

and MGMT promoter methylation status. 3D IG maps were utilized to identify the imaging areas that influenced the 

decision-making process.  

 

Results 

The area under the receiver operating curve (AUC) for IDH classification was 0.94, 0.93, and 0.94 for T2, contrast-

enhanced T1 (CT1), and T2-CT1 sequences, respectively. The model trained on T2 for MGMT prediction achieved 

an AUC of 0.65. The model's attention for IDH classification on T2 primarily focused on cerebrospinal fluid, while on 

CT1, it emphasized contrast-enhanced areas. However, the model primarily highlighted the tumoral area when both 

CT1 and T2 images were used. Conversely, the model for the MGMT task highlighted all areas without a specific 

anatomical or functional preference. (Figure 1)  

 

Conclusion  

In radiogenomics, the imaging features the model detects, such as IDH classification, depend on the imaging 

sequence. Using multiparametric MRI directs the model's attention more towards the tumor region. However, no 

specific imaging areas are emphasized when the model fails to predict the radiogenomics outcome accurately. To 

draw comprehensive conclusions, employing more interpretation maps, analyzing different combinations of MRI 

sequences, and considering neuroradiologists' reports on the highlighted areas is necessary. This approach 



presents a novel method for identifying imaging biomarkers for radiogenomics through DL.  

 

Statement of Impact  

Interpretation maps hold the potential to facilitate the discovery of new imaging biomarkers.  

 

 

 

Figure 1 illustrates the brain magnetic resonance imaging ( of a patient with glioma, showcasing T 1 T 2 and 

contrast enhanced T 1 (CTE 1 images The top row of the figure displays three distinct integrated gradient maps 

generated by three different model for predicting the isocitrate dehydrogenase gene status trained on CTE 1 and T 

2 data, CTE 1 data alone, and T 2 data alone respectively Notably, all the images within the figure depict the same 

slice for comparative analysis 
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Adway Kanhere, MS; Paul H. Yi, MD, MS; Vishwa S. Parekh, PhD 

 
 

Introduction  
Although several large-scale chest x-ray datasets have facilitated the development of deep learning (DL) models, 
heterogeneity in disease labeling schemes limits their inter-operability [Figure 1]. For example, two datasets with 
different disease labeling conventions cannot be used to directly train a single DL model. Partial annotations – 
where datasets have non-overlapping disease labels – prevent use of these datasets in aggregate for DL model 
training. We developed a collaborative learning framework called surgical aggregation to harmonize imaging 
datasets with heterogeneous label schemes into a single model even in the presence of partial annotations.  
 

Hypothesis  
Surgical aggregation will allow for high-performing DL models trained from datasets with partial annotations that 
outperform conventional approaches.  
 

Methods  
Surgical aggregation is a semi-supervised, model-and-task-agnostic framework that selectively aggregates task-
specific knowledge from each participating client to train a global model across all observed labels [Figure 2]. Each 
client can contribute knowledge for its tasks without interacting with any other client or may choose to import 
knowledge for different tasks via the global model. We evaluate surgical aggregation’s ability to harmonize the NIH 
CXR14 (n=112,120) and CheXpert (n=224,316) datasets using 70%-10%-20% train-validation-test splits (split at 
patient level). Each dataset has 14 disease labels, of which 7 are common, for a total of 20 unique labels. We used 
these datasets to train a 20-label classifier, with external testing on the MIMIC-CXR-JPG dataset (n=377,110). We 
evaluate the surgical aggregation model using mean area under the ROC curve (AUROC) and compare to models 
trained using conventional methods (baseline, central aggregation, and federated learning) using bootstrapping and 
paired t-tests; significance was defined as p< 0.05.  
 

Results 
On the NIH test set (n=22,330), surgical aggregation performed comparably to the NIH baseline with an AUROC of 
0.81 (p=0.06), while outperforming other conventional approaches (AUROC of 0.67-0.68; p< 0.001) and 
outperformed all conventional approaches with an AUROC of 0.75 on the CheXpert test set (n=45,208) compared 
to 0.69-0.74 (p< 0.001). Similarly, on the external MIMIC test set, surgical aggregation outperformed all approaches 
with an AUROC of 0.75 compared to 0.71-0.72 (p< 0.001) [Figure 3].  
 

Conclusion  
Surgical aggregation allows for harmonization of datasets with heterogeneous and non-overlapping disease 
labeling conventions to train high-performing DL models for CXR diagnosis. This method can scale to any medical 
imaging use case with heterogeneously labeled datasets.  
 

Statement of Impact  
As DL-assisted disease characterization becomes a mainstay in radiology, surgical aggregation provides a 
framework to leverage heterogeneous medical imaging datasets in aggregate to train large-scale clinically-useful 
models.  
 
 
 
 



 
 
Figure 1. Siloed approach of developing and training models separately on large-scale medical imaging datasets. In 
this illustration, both institutes curate chest x-ray datasets to train deep learning models on similar tasks. However, 
due to data and label heterogeneity and patient data privacy, harmonizing and leveraging knowledge from both 
datasets is difficult. 
 

 
 
Figure 2. An overview of the surgical aggregation framework. Due to inherent differences in image acquisition, 
annotation, and curation, large-scale medical imaging datasets are heterogeneous and focus on similar but different 
disease annotations. Surgical aggregation harmonizes and aggregates knowledge from these heterogeneous 
datasets into a global deep learning model. 
 



 
 
Figure 3. Comparison between the mean AUROC score metrics of surgical aggregation, central aggregation, 
federated learning, and baseline models on held-out NIH and CheXpert test sets and external MIMIC test set 
across all 20 disease labels. 
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Machine Learning for the Prediction of Osteopenia/osteoporosis Using the 
Bone Attenuation of Multiple Osseous Sites from Chest Computed 
Tomography 

Ronnie Sebro, MD, PhD, Professor of Radiology, Mayo Clinic Florida; Cynthia De la Garza-Ramos, MD 

Introduction 
The attenuation of the lumbar and thoracic spine trabecular bone from CT scans of the abdomen and pelvis have 
shown utility in predicting BMD measurements. Prior studies have used 2D assessments of the vertebral body 
trabecular CT attenuation measured on a single slice, however, we hypothesized that volumetric 3D measurement 
of the vertebral body trabecular CT attenuation would provide a better estimate of the patient’s BMD than 2D 
measurements because the entire trabecular vertebral body is assessed rather than a sample.  

Hypothesis 
To use machine learning and the 3D CT attenuation of all bones visible on chest CT scans to predict 
osteopenia/osteoporosis.  

Methods 
We retrospectively evaluated 364 patients with chest CT and Dual-energy X-ray absorptiometry (DXA) scans within 
6 months of each other between 01/01/2015-08/01/2021. Volumetric segmentation of the ribs, thoracic vertebrae, 
sternum, and clavicle was performed using 3D Slicer to obtain the mean CT attenuation of each bone. The study 
sample was randomly split into training/validation (80%, n=291) and test (20%, n=73) datasets. Univariate analyses 
were used to identify the optimal CT attenuation thresholds to diagnose osteopenia/osteoporosis. We used 
penalized multivariable logistic regression models including Least Absolute Shrinkage and Selection Operator 
(LASSO), Elastic Net, and Ridge regression, and Support Vector Machines (SVM) with radial basis functions (RBF) 
to predict osteopenia/osteoporosis and compared these results to the CT attenuation threshold at T12.  

Results 
There were positive correlations between the CT attenuation between all bones (r>0.6, P< 0.001 for all). There 
were positive correlations between CT attenuation of the bones and the L1-L4 BMD T-score, total hip T-score, and 
femoral neck T-scores (r>0.4, P< 0.001 for all). A CT attenuation threshold of 170.2 Hounsfield units (HU) at T12 
had an AUC of 0.702, while a threshold of 192.1 HU at T4 had an AUC of 0.757. The SVM with RBF had the 
highest AUC (AUC=0.864) and was better than the LASSO (P=0.011), Elastic Net (P=0.011), Ridge regression 
(P=0.011) but was not better than using the CT attenuation at T12 (P=0.060).  

Conclusion 
The CT attenuation of the ribs, thoracic vertebra, sternum, and clavicle can be used individually and collectively to 
predict BMD and to predict osteopenia/osteoporosis.  

Statement of Impact 
Although the CT attenuation of T12 has been historically used to screen for osteopenia/osteoporosis, we found that 
a T4 CT attenuation threshold of 192.1 HU had a higher AUC than a T12 threshold of 170.2 HU.  



 
 
Fig. 1. Three-dimensional volumetric segmentation of the sternum, clavicles, and thoracic vertebrae (T1-T12). 
 



 
 



Fig. 2. Violin plots of the mean CT attenuation of each bone by WHO diagnosis. 0 = Normal BMD. 1 = Osteopenia. 
2 = Osteoporosis. 
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