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Introduction/Background  

Parotid gland tumors (PGT) are the most common salivary gland tumors. With increasing imaging utilization, most PGTs 

are detected incidentally on CT, however many are overlooked by radiologists prioritizing acute pathology. This study 

presents a deep learning (DL) solution for opportunistic PGT detection on CT with a focus on optimizing complimentary 

objectives for tumor screening and segmentation.  

 

Methods/Intervention  

A retrospective cohort of 11,449 consecutive non-contrast head CT exams were aggregated from two academic centers. 

PGTs, defined as a parotid mass >10 mm, were identified from radiology or histopathology reports and annotated with a 

mask by an expert neuroradiologist. In total, 219 PGTs were identified (N=112 hospital A, N=107 hospital B). A multistage 

DL pipeline was developed for PGT detection (Fig. 1). First, an initial model localizes each parotid gland. Subsequently, a 

single 3D U-Net simultaneously implements the segmentation (per-voxel spatial overlap) and screening (per-exam tumor 

detection) tasks. To convert segmentation outputs into binary screening results, thresholds for positive voxel predictions 

were calibrated for optimal accuracy. Given complimentary objectives of the segmentation and screening tasks, various 

loss functions (binary cross-entropy, focal loss, soft Dice) and training cohorts (full cohort, positive only) were evaluated. 

Performance was assessed using five-fold cross-validation.  

 

Results/Outcome  

Table 1 summarizes results for the various experiments. Overall, the best screening model achieved a per-exam 

specificity, sensitivity, PPV, NPV and accuracy of 0.947, 0.719, 0.858, 0.878, 0.872, while the best segmentation model 

achieved a Dice score of 0.71. Of the positive predictions, six tumors were missed by the original interpreting physician. In 

general, cross-entropy (CE) outperformed focal loss (FL) for segmentation, while FL outperformed CE for screening due 

to improved specificity and lower false positives. Soft Dice (SD) tended to improve both tasks. The use of negative training 

examples significantly decreased tumor Dice score while reducing false positives for the screening task.  

 

Conclusion 

By combining a first-pass screening model with a subsequent focused segmentation model, a unified DL framework can 

identify and delineate PGTs on routine CT with high accuracy.  

 

Statement of Impact  

A DL model can identify incidental PGTs on routine CT imaging with high accuracy including tumors missed in a realistic 

clinical workflow.  

 

 

 



 

Fig. 1. Overview of two-step deep learning algorithm for parotid mass detection and segmentation. (A) Original full 

resolution CT exam is used by initial deep learning localization algorithm to generate prediction heatmaps (B) isolating the 

right and left parotid glands. The initial localization algorithm outputs are used to generate cropped volumes of each 

individual parotid gland, after which a second segmentation algorithm is used to identify parotid masses. (C) Final 

algorithm output, and (D) corresponding ground-truth annotation show high consensus.  

 

 

Table 1. Screening and segmentation performance of experimented training methods. CE: cross-entropy; SD: soft dice; 

FL: focal loss; spec: specificity; sens: sensitivity; PPV: positive predictive value; NPV: negative predictive value; acc: 

accuracy 
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