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Introduction/Background
We explore unsupervised machine learning (ML) to analyze expert-generated qualitative assessments of lung computed
tomography (CT) scans to differentiate nonhuman primate (NHP) models of experimental respiratory virus infections.

Methods/Intervention

We utilized CT scans from four distinct experiments evaluating NHP infection models after cowpox virus (CPV), influenza
A virus (IAV; with and without superimposed methicillin-resistant staphylococcal [MRSA] exposure), Nipah virus (NiV), and
SARS-CoV-2 exposures (Figure 1). N=19 subjects with imaging abnormality across multiple time points were selected.
While CT protocols were controlled, NHP species, age, weight, and dose/route of inoculation varied across experimental
groups (Table 1). Using a standardized evaluation questionnaire, a radiology specialist qualitatively graded each CT lung-
lobe. Features were one-hot encoded, and Uniform Manifold Approximation and Projection (UMAP) was applied for
dimensionality reduction followed by k-means clustering.

Results/Outcome

A UMAP plot (Figure 2) demonstrates the grouping of CT scan qualitative features from different NHP models into clusters
revealing key insights: « # Clusters: Six-clustering analysis generated the highest silhouette score (SS= 0.575). Two
clusters express peak vs. non-peak disease and another contains an individual (subject 12) which had pre-existing lung
abnormality. « Exposure Clustering: CT abnormalities from 1AV +/- MRSA and SARS-CoV-2 virus models cluster together
suggesting similar qualitative lung features across these models. CT abnormalities after CPV exposure consistently
clustered separately, suggesting distinct qualitative features in this model. « Longitudinal Variability: after a specific viral
exposure (e.g. IAV + MRSA), peak CT abnormality (cluster O = blue) clustered distinctly versus non-peak (cluster 3 = red)
abnormality, consistent with the expected time-series analysis.

Conclusion

Lung lesion phenotypes likely vary across viral infections, routes of inoculation, dose and other factors. Using a
radiologist's lobe-based qualitative assessment, ML methods can effectively distinguish differences. Future efforts with
more subjects will explore fully automated methods (e.g. lung segmentation, radiomic feature extraction) as input to
machine learning-based classification.

Statement of Impact
Differentiating qualitative CT lung abnormality across NHP models of viral infections provides initial proof-of-principle that
urges ML approaches of user-independent radiomic feature analysis in the future.



+/- MRSA

Virus Tvpe Route of Species Age Number of Days Post-
yp Inoculation P Range (y) Subjects Exposure
Cowpox virus Aerosol Rhesus monkey 3-8 6 4-29
Nipah virus Aerosol African Green 6-8 2 3-56
monkey
SARS-CoV-2 Intrabronchial + Crab-eating 4-10 6 )28
Aerosol macaque
Influenza A virus .
Intrabronchial Rhesus monkey 2-4 5 2-14

Table 1 - Experimental Conditions

Figure 1 — Representative NHP Lung CT Scans from with four different infection models: A) Cowpox virus (DPE=7), B)

influenza virus + MRSA (DPE=10), C) Nipah virus (DPE=3), D) SARS-CoV-2 (DPE=4)
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Figure 2 - UMAP and k-means Clustering of Qualitative CT Scan Features by NHP model type
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