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Introduction/Background

Automated humerus segmentation on radiographs is critical for real-time orthopedic Al applications but
remains largely unexplored due to anatomical overlap, occlusion, and variability in image quality. While
segmentation on CT has been widely studied, axillary shoulder radiographs present unique challenges that
demand robust and interpretable solutions. Herein we propose a humerus segmentation framework based on
a modified MobileNetV3-Large architecture that runs in real-time.

Methods/Intervention

Ground truth segmentations were annotated on 286 axillary radiographs from the Stanford MURA dataset by a
senior orthopedic resident and two medical students. For benchmarking, we perform 5-fold cross validation on
binary cross-entropy (BCE), Dice, and focal losses independently, then introduced a dynamic multi-loss
formulation incorporating boundary loss to better penalize edge errors. To enhance performance on difficult
cases, we implemented two self-supervised strategies during fine-tuning: 1) Hard-sample mining that
prioritizes difficult cases such as unclear glenohumeral joint spaces and 2) Pixel-level contrastive loss with
pseudo-negatives that directly penalizes false-positive pixels on adjacent bones. Dice score and Hausdorff
distance were used as primary evaluation metrics (Table 1), with visualizations of segmentation quality (Fig 1)
and per-image performance variability (Fig 2).

Results/Outcome

Baseline BCE loss suffered from class imbalance, resulting in under-segmentation and reduced Dice scores.
Focal loss, while designed to address this, showed instability across folds due to the static a parameter, which
struggled with the wide variability in humerus-to-background ratios. Dice loss, while better at optimizing
overlap, under-penalized edge errors—critical in orthopedic contexts (Fig. 1, Fig. 2). Dynamic incorporation of
boundary loss consistently outperformed single-loss formulations, with dynamic dice/boundary loss achieving
>0.94 dice (Table 1). Self-supervised hard-sample mining and contrastive learning improved robustness on
challenging images and enhanced boundary precision, effectively reducing Hausdorff Distance while
maintaining high dice (Table 1, Fig. 1). These enhancements also reduced performance variance, improving
generalization on challenging images (Fig. 2).

Conclusion
Combining adaptive loss strategies with self-supervised fine-tuning significantly improves segmentation
performance and reliability on axillary shoulder radiographs.

Statement of Impact
This is one of the first systematic studies on humerus segmentation from radiographs. Our approach improves
boundary precision and generalization, offering a deployable solution for real-time orthopedic imaging



workflows.

Table 1a Table 1b Table 1c
Model Hyperparameters Training Augmentations Humeral Segmentation Results
Backbone Initial LR| 0.0001] Augmentation Type Hyperparameters DICE {1" | HAUS ("'}
Segmentation Head Initial LR 0.01] Limit = 0.08| Mean| Std Mean Std
Validation Evaluation Metric Dice] Shift] P=0.75) BCE| 0.904 0.026] 16.1] 3.3
Epoch Limit 499 Limit=0.1] BCE+Boundary| 0.916| 0.020, 1486 1.9
Random Statel 42 Scale| P=0.75| Focall 0.888| 0.039 18.2 6.1
Scheduler Patience 10 Limit = 15 Focal+Boundary] 0.8916| 0.016] 14.00 3.0
Scheduler ____ value 0.5 Rotate P=0.75| Dice| 0.918 0.015] 15.00 1.5
Optimizer AdamW| Horizontal Flip P=0.5 Dice+Boundary] 0.942 0.005 11.4 2.1
Minimum Learning Rate le-8 a=120 BCE+Dice+Boundary] 0.912] 0.020| 15.8 2.1
Early Stop Patience] 100 Epochs| $=12070.05 Dice + Boundary + Self-
Uncertainty] Elastic Transform| P=0.5] supervised Fine Tuning] 0.942 0.005 11.3 2.0
based Dynamic| Number of holes=[1,4]
Loss Weighting Method| Loss Weightin Hole Height Range=(0.01,0.1]
Fine Tuning Specific H perparameterf‘ Hole Width Range=[0.01,0.1]
Validation evaluation metric Hausdorif| Coarse dropout P=0.05]
Epoch Limit 200 Random Brightness
Early Stop Patience 50 Epochs Contrastl P=0.3
Backbone Initial LR| le-5
Fine tuning Head LR le-6)
Minimum Learning Rate| 1le-8

Table 1a. All models were implemented in PyTorch and trained using identical base hyperparameters, except during the fine-
tuning stage, which incorporated a self-supervised contrastive loss. Unlike the initial training phase—which monitored the Dice
score—the fine-tuning phase optimized directly for the Hausdorff distance. This reflects the objective of the self-supervision
strategy, which introduces pseudo-negative labels to explicitly penalize over-segmentation. Since Hausdorff distance is more
sensitive to spatial outliers and boundary errors, it serves as a more appropriate optimization target for this task. Table 1b.
Summary of training augmentation techniques. All augmentations were implemented using the Albumentations library. Each
augmentation was applied probabilistically, with probability values (P) listed per transformation. Parameters for spatial
augmentations are defined relative to image dimensions: the limit for shift, scale and hole height/width cutout operations are
defined as a fractional range of image width. Rotations are specified in degrees. Augmentations were applied only to the training
data within each cross-validation fold. All data were uniformly resized to 256x256 pixels. Table 1c. Summary of final validation
evaluation metrics. Evaluation metrics include Dice score and Hausdorff distance (HD). The Dice score quantifies pixel-wise
overlap between predicted and ground truth segmentations, with a value of 1 indicating perfect alignment. In contrast, HD
measures the maximum Euclidean distance between predicted and actual object boundaries—making it particularly informative
for assessing boundary accuracy and shape integrity. Lower HD values indicate better performance; for reference, an HD of X
reflects a maximum boundary deviation of X pixels. Models trained with Boundary loss consistently outperformed those trained
with a single loss function, yielding higher Dice scores, reduced Dice score variability, and lower mean Hausdorff distances—
collectively indicating enhanced accuracy and consistency, particularly at the edges. Among pre—fine-tuning models, the
Dice+Boundary configuration achieved the best performance. Self-supervised fine-tuning of this model yielded further reductions
in Hausdorff distance, though improvements were modest and Dice scores remained largely unchanged. The three-term
BCE+Dice+Boundary model performed intermediately, likely due to competitive rather than synergistic interactions among the
loss terms, which may have diluted the boundary-enforcing effect. Bolded values indicate the best-performing model across all
metrics.
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Figure 1. Humerus Segmentation Performance by Loss Function. Violin plots show the distribution of Dice scores and Hausdorff
distances for each model variant. For readability, violin plot values are clipped to within three standard deviations of the mean.
Adding a Boundary loss consistently improved performance over single-loss models, yielding higher Dice scores, lower
Hausdorff distances, and reduced variance. While fine-tuning the Dice+Boundary model had minimal effect on Dice scores, it
slightly reduced extreme Hausdorff outliers. The BCE+Dice+Boundary model exhibited intermediate performance across both
metrics. The distribution plots suggest that the addition of BCE may have counteracted the synergy between Dice and Boundary
losses, leading to Dice and Hausdorff performances to be that of between BCE-only and DICE-only models. Models trained with
Focal loss exhibited markedly higher variance in both metrics, likely reflecting the sensitivity of the fixed a parameter to large

inter-sample variability in humeral size across radiographs.
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Figure 2. Qualitative comparison of humerus segmentation across models trained with different loss functions. A challenging
validation sample was selected based on large discrepancies in Dice score and Hausdorff distance across models. Inference
was performed using all saved models from the same fold, which had only seen this sample during validation. This sample
exhibits substantial occlusion over the lateral humeral head due to overlying soft tissue—likely subcutaneous fat—resulting in a
pronounced intensity discontinuity across the humerus. The baseline BCE model struggled with this variability, segmenting the
medial portion of the humeral head but abruptly failing at the lateral intensity drop-off caused by thicker, soft tissue. Incorporating
Boundary loss consistently improved shape fidelity of both the humeral shaft and humerus head. The Dice-only model achieved
decent shaft segmentation, but adding Boundary loss further refined the shape of both the shaft and the humeral head.
Interestingly, while the inclusion of Boundary loss in the Focal loss model significantly refined the humeral head shape in this
sample, it came at the cost of degraded shaft segmentation. This trade-off however was not representative of most cases, as
models incorporating Boundary loss showed lower variance and better overall performance (Table 1b, Figure 1). The
BCE+Dice+Boundary model recovered the humerus shaft, but the contour appears jagged and irregular—suggesting competing
optimization pressures between loss terms. Finally, the fine-tuning the Dice+Boundary model with self-supervised contrastive
learning yielded a smoothing effect on the articular surface and improved shaft continuity, demonstrating improved

generalization and spatial coherence in challenging anatomical contexts.
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