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Introduction/Background

As oncology treatment response guidelines increasingly leverage technology for more comprehensive tumor
characterization and longitudinal tracking, the need for accurate and workflow-efficient 3D tumor segmentation
becomes critical. Al segmentation models are limited by inter-rater variability in their manual training
annotations, an issue that can limit model performance. In this work, we introduce a novel framework that
reframes inter-reader variability not as noise to be minimized, but as a valuable signal. This is achieved
through two key innovations: first, the creation of a detailed “Disagreement Profile” that captures the nature of
annotation variability; and second, the use of this profile to actively guide the generation of a more robust
consensus segmentation from multiple raters.

Methods/Intervention

We evaluated a cohort of brain metastases patients, each segmented eight times by six raters. In our two-
stage methodology, we first generated Disagreement Profiles by comparing each rater's annotation to a
STAPLE consensus. For comparability, our four metrics (DSC, ASSD, HD95, LM) were converted to
percentile ranks using cohort-specific z-scores and the normal cumulative distribution function (CDF), rather
than an idealized standard. In the second stage, we developed an iterative, weighted-mean consensus-
building algorithm guided by the Disagreement Profiles. This algorithm selectively amplifies the metric-specific
strengths of individual annotators to generate a final, robust consensus.

Results/Outcome

Using a leave-one-out cross-validation approach across three cohorts (n=75), the profile-guided consensus
method demonstrated a statistically significant improvement in geometric segmentation metrics compared to a
standard STAPLE baseline. Our method produced a significantly higher mean DSC (0.90 + 0.09 vs. 0.88 =
0.11, p <0.001) and a significantly lower ASSD, indicating better boundary agreement (1.76 + 3.14 mm vs.
2.50 £ 4.95 mm, p = 0.008). Z-scores effectively identified outlier cases and generated interpretable
disagreement “signatures” for each. Visualizing these signatures as radial plots offered an intuitive view of
multi-dimensional rater divergence.

Conclusion

Our two-stage framework powerfully analyzes multi-rater variability in neuro-oncology imaging. By converting
disagreement into an actionable profile that guides the consensus process, it produces more reliable and
confident reference segmentations.



Statement of Impact
Our profile-guided approach enhances Al training data quality and fosters more robust, reproducible standards
for imaging-based clinical research.
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Disagreement Profile: This profile is designed to quantify the variability between different raters' segmentations. It is composed
of four distinct metrics, each assessing a different aspect of disagreement: » Volumetric Overlap: Measured by the Dice Similarity
Coefficient (DSC). « Average Boundary Error: Measured by the Average Symmetric Surface Distance (ASSD). « Worst-Case
Boundary Discrepancies: Measured by the 95th-percentile Hausdorff Distance. * Clinical Size Estimation: Measured by a Linear
Measurement. When this profile is displayed on a radial plot, the dashed line serves as a visual baseline, representing the
average or median performance within the dataset (50th percentile, equivalent to a Z-score of 0) for each metric.
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Algorithm 1: Disagreement Profile Generation This algorithm generates a Disagreement Profile to quantify inter-rater variability
for each case. First, a baseline consensus is derived using the STAPLE algorithm. Each individual annotation is then compared
against this consensus across four metrics: volumetric overlap (Dice Similarity Coefficient), average boundary error (ASSD),
worst-case boundary discrepancies (95th-percentile Hausdorff Distance), and clinical size estimation (Linear Measurement).
Finally, these raw metrics are converted into cohort-specific z-scores to create a standardized profile for robust, relative

comparison. Algorithm 2: Guided Consensus Generation This SoftMax-weighted algorithm dynamically adjusts the influence of



each annotation based on its z-scores across four metrics. Annotations with more favourable (i.e., negative) z-scores for a
specific metric contribute more heavily to the final consensus in that dimension. For instance, an annotation with minimal
boundary error (a low ASSD z-score) becomes more influential in shaping the consensus boundary, effectively leveraging the
specific strengths of each rater.
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Flair Seq: A representative axial FLAIR sequence image of patients with brain metastasis. Segmented Tumour: A visual map of
annotation agreement among eight independent raters. Green indicates high agreement (i.e., a high number of raters included
the voxel), while red indicates low agreement at the tumour boundary. Consensus Estimation: The final, single segmentation
mask generated by our proposed profile-guided algorithm. The pair-wise annotation metrics, such as mean and standard

deviation, were calculated for each case by comparing all 28 possible pairwise combinations of the eight annotators' masks.
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