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Introduction/Background  

Despite the large emphasis placed on GPUs for deep learning in radiology, the biggest bottlenecks often 

come from CPUs during image preprocessing. However, frameworks to optimize data loading are scarce. We 

present a high-performance data loading pipeline using persistent caching that outperforms the state-of-the-art 

in speed, while supporting hierarchical data access via metadata and seamless integration with augmentation 

libraries.  

 

Methods/Intervention  

Our pipeline uses persistent caching to reduce CPU overhead by storing deterministic transformations on disk 

and reloading preprocessed images during training (Figure 1). Cache files are saved as HDF5 files in a 

customizable hierarchical folder structure—mirroring typical medical data organization (e.g., 

patient/study/image). We evaluate two benchmarks using 10,000 chest radiographs from MIMIC-CXR-JPG: 

(1) parallelized data loading, measured by throughput (samples/second), and (2) end-to-end training for a 

contrastive learning task, measured by energy consumption (kWh), epoch time, and GPU idle time. For data 

loading, we compare against direct loading and MONAI’s persistent caching pipeline. All experiments are run 

across varying batch sizes to simulate increasing data dimensionality. Each experiment was run for 5 epochs 

and repeated 3 times; results reflect mean across runs.  

 

Results/Outcome  

For data loading, our pipeline was 10-16× faster than direct loading across batch sizes (Figure 2). With 

augmentations, acceleration was 9-13×, increasing with batch size. Compared to MONAI, our method is 2.4–

3.6× and 2.9–3.5× faster with and without augmentations, respectively. For training, our pipeline reduces GPU 

idle time, boosts throughput, and lowers energy use as data dimensionality grows (Figure 3). At batch size 

128, it cuts energy by 40%, GPU idle time by 86%, and training time by 50% compared to direct loading. At 

the largest batch size, training time drops by up to 70%. No benefits are observed at small batch sizes (< 32), 

where data loading is not a major bottleneck.  

 

Conclusion 

Our persistent caching pipeline markedly reduces CPU data loading bottlenecks, accelerating deep learning 

training times for medical imaging. Our pipeline will be released publicly to benefit the radiology AI community.  

 

Statement of Impact  

Our data loading pipeline reduces large batch size training time by >3× while improving throughput by >16×, 

accelerating deep learning workflows.  

 

 



 

Figure 1. Schematic diagram illustrating how our pipeline circumvents CPU bottlenecks commonly observed in traditional 

machine learning workflows by leveraging persistent caching mechanism 



 

Figure 2 Our Pipeline (red) consistently outperforms direct loading and MONAI caching across all batch sizes, both with and 

without augmentations. (a). Comparison of throughput(samples/sec) between the MONAI-based pipeline and our custom 

pipeline used in the training benchmark procedure. Graph illustrates the throughput performance when data augmentations are 

included in pipeline. (b). Comparison of throughput between the MONAI-based pipeline and our custom pipeline used in the 

training benchmark procedure. This graph illustrates throughput performance without data augmentations, resulting in 

significantly higher throughput compared to Figure 1(a). 



 

Figure 3 Our Pipeline maintains low values of epoch time, GPU idle percentage and energy consumed as batch size increases. 

Note that direct loading scales poorly as batch size increases. (a). Comparison of Average Time required for model to complete 

the epochs across multiple batch sizes. (b). Comparison for Percentage of time GPU remains Idle (does not perform any 

computations) across multiple batch size (c). Energy Consumed(kWh) by the training benchmark procedure across multiple 

batch sizes 
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