Opportunistic Screening, Population Health, and Risk Prediction | Scientific Abstract Presentations

Advancing Opportunistic Detection of Osteoporosis Through AI-Driven CT Segmentation 

  • Amy MiHyun Jang, University of Pennsylvania, Perelman School of Medicine 
  • Jeffrey T. Duda, PhD; Arijitt Borthakur, PhD, MBA; James C. Gee, PhD; Christopher C. Carson, PhD; Anurag Verma, PhD; Daniel J. Rader, MD; Charles E. Kahn, MD, MS, FSIIM; Walter R. Witschey, PhD; Hersh Sagreiya, MD 

 

An Explanatory Deep Learning Model for the Prediction of Biologically Relevant Gene Expression in Non-small Cell Lung Tumors and their Microenvironment 

  • Vibha Rajesh Rao, Dartmouth Health 
  • Adrienne A. Workman; Liang Lu; Xiaoying Liu, MD; Shrey S. Sukhadia, PhD 

 

Applying a Pediatric Liver Fibrosis Classification Tool to Adult Trichrome-Stained Liver Biopsies: A Validation Study 

  • Zachary Taylor, Cincinnati Children's Hospital 
  • Anas Bernieh; Sarangarajan Ranganathan, MD, MBBS; Christopher Woods; Madhieh Shabanian, MS; Jennifer Picarsic, MD; Elanchezhian Somasundaram, PhD; Jonathan Dillman, MD, MSc 

 

Deep Learning for Automated Aortic Valve Calcium Scoring on Non-Gated Chest CT 

  • Chanon Chantaduly, BA, University of California, Irvine 
  • Shawn Sun, MD; Justin Grant, MD; Long-Co Nguyen, MD; Parker Rushworth, MD; Raffi Hagopian, MD; Jennifer Xu, MD; Peter D. Chang, MD 

 

Discordance Analysis Between Automated Cardiothoracic Ratio Measurements and NLP-Extracted Cardiomegaly Labels 

  • Frank Li, PhD, Emory University 
  • Abdulhameed Dere, MBBS; Abdulquddus Ajibade, MBBS; Theo Dapamede, MD, PhD; Mohammadreza Chavoshi, MD; Janice M. Newsome, MD; Hari Trivedi, MD; Judy W. Gichoya, MD, MS, FSIIM 

 

Predicting Major Adverse Cardiovascular Events Using Multimodal Models 

  • Frank Li, PhD, Emory University 
  • Kéana Aitcheson, MBBS; Theo Dapamede, MD, PhD; Hari Trivedi, MD; Judy Gichoya, MD, MS, FSIIM

Objectives

Define & critically evaluate emerging theories, methods, and applications in medical imaging informatics research 

Identify opportunities and challenges in translating research-driven AI and informatics advances into clinical practice

Discuss the potential impact of medical imaging AI innovations on patient outcomes, population health, and the future direction of the field

SESSION ID

2003


DATE

TUE, OCT 21


TIME

10:45 AM – 12:15 PM PT


LOCATION

The Beach Room


CONTINUING EDUCATION

ASRT-RT | CAMPEP-MPCEC | SIIM IIP-CIIP