Scientific Abstract Presentations

Large Language Models – Session 2

Benchmarking Quantization: A Comprehensive Comparison of Open-Source Large Language Models

  • Blake T. Passe, Mayo Clinic
  • Sanaz Vahdati, MD; Bradley J. Erickson, MD, PhD, CIIP, FSIIM

ConTEXTual Net 3D: Visual Grounding in PET/CT for Enhanced Interactive Reporting

  • Zachary Huemann, MS, MA, University of Wisconsin – Madison
  • Samuel Church, MS; Joshua D. Warner, MD; Daniel Tran; Xin Tie, MS; Junjie Hu, PhD; Steve Y. Cho, MD; Meghan G. Lubner, MD; Tyler J. Bradshaw, PhD

Does Size Really Matter? Comparing llama 3 vs 3.1

  • Suyash Khubchandani, MD, MHA, CARPL.ai, Inc
  • Amit Kumar; Vasantha K. Venugopal, MD

Large Language Models Create Useful, Accurate, Clear Summaries of Virtual Radiology Workgroup Meetings

  • Benjamin Mervak, MD, Michigan Medicine
  • Muhammad Bhalli, MBA; Tricia Niedbala, MBA; Kenneth Buckwalter, MD

Synthesizing Diagnostic Insights from Radiology Reports: A RAG-Based LLM Method for Reducing Hallucinations and Preventing Catastrophic Forgetting

  • Briana Malik, University of Pittsburgh

Transforming Plain Text Radiology Reports into Structured Data Using Common Data Elements and FHIR Standards

  • Michael Hood, MD, Massachusetts General Hospital
  • Roshan Fahimi, MD; Heather Chase; Tarik Alkasab, MD, PhD

Session Chair

eliot_siegel_400x400 1

Eliot Siegel, MD, FSIIM
Professor of Radiology, University of Maryland School of Medicine
Chief, Imaging Services, VA Maryland Health Care System

CMIMI24 V2 800 X 542

Date

Mon, Oct 22

Location

GSU Metcalf Hall Small

Time

8:45 – 10:15 AM ET

Continuing Education

ASRT-RT | CAMPEP-MPCEC | SIIM IIP-CIIP