Transformer models are an increasingly important component of machine learning solutions. In the first part of this webinar, we will review the current and potential use cases for these models, specifically within the contexts of natural language processing and image analysis, along with important considerations for their development.

In the second part of the webinar, we will focus on clinical language processing. Clinical reports are an essential component of electronic health records (EHRs). These reports contain information about a patient’s medical history, including their diagnoses, treatments, and test results. This information can be extracted and analyzed using natural language processing (NLP) techniques, which can benefit clinical trial recruitment, clinical coding, etc. This part of the webinar will introduce clinical language processing and discuss the contribution of external knowledge sources in clinical NLP. We will then explore how contrastive learning can be used to bridge the gap between clinical text processing and diagnostic imaging, as we will explain how it can be used to train predictive models without the need for manual annotation of data.

Following that, we’ll discuss how self-supervised learning can help bridge the gap between clinical text processing and diagnostic imaging. We’ll explain how this technique allows us to train predictive models without heavily relying on manual data annotation, making the process more efficient and scalable.


After attending this webinar, the attendee should be able to:

  • Review the basics of transformer models and their increasing presence in machine learning methodologies
  • Discuss the uses of transformers in Natural Language Processing and image analysis, with particular focus on applications to radiology practice
  • Define NLP and its main tasks including named-entity recognition, co-reference resolution, and relation extraction
  • Examine contrastive learning, linking clinical textual reports to diagnostic images, and tackling small-sized annotated data sets

CE Credit

SIIM has approved this activity for 1.0 hours of SIIM IIP Credits towards certification and re-certification by the American Board of Imaging Informatics (ABII).

To receive credit, registrants must view the entire webinar and then complete the post-webinar survey. Webinar credits will only be awarded one time per webinar view, regardless of if the learner watches the content live or on-demand.

Note: In order to receive credits for any events/learning you attend you must select your eligible credit types found in the CE & Certification section of your MySIIM Account profile.

To access the webinar, once you are registered navigate to My Learning in your My SIIM Account profile.    

Not a member?  Join SIIM Today and Save! 


May 23, 2023

Credit Amount


Credit Type


Non-Member Cost


Member Cost


Delivery Type

  • On-Demand

Audience Type

  • Clinician
  • Developer
  • Imaging IT
  • Student Member in Training (SMIT)

Parsa Bagherzadeh, PhD

Postdoctoral Research Fellow·

McGill University

Farhad Maleki, PhD

Assistant Professor

University of Calgary

Susan Sotardi, MD, MS

Assistant Professor of Radiology

Children's Hospital of Philadelphia


Shielding Patient Care: Strategies for Managing the Clinical Impacts of Cybersecurity Incidents

Jul 16, 2024

In today’s digitally interconnected healthcare landscape, the threat of cybersecurity breaches looms large, posing significant challenges to patient care, data…


Unlocking the Power of Networked Radiology: Enhancing Connectivity and Collaboration in Modern Healthcare

Jun 11, 2024

Join us for an engaging webinar, where we delve into the importance of networked radiology in modern healthcare systems. In…


Confronting the Reproducibility Crisis in Machine Learning: Navigating Best Practices and Avoiding Pitfalls

Jun 5, 2024

Join us as we explore the core challenges and solutions in enhancing the reproducibility and generalizability of machine learning projects.…