Innovations in Segmentation and Ground Truth Creation | Scientific Abstract Presentations

Adaptive Multi-Loss Learning with Self-Supervised Fine-Tuning for Robust Humerus Segmentation on Radiographs 

  • Anthony Wu, MS, University of California, Irvine 
  • Arya Amirhekmat, MD; Pooya Khosravi, MS; Paramveer Birring; Jason Liang; Maryam Golshan-Momeni, MD; Peter Chang, MD; Roozbeh Houshyar, MD; James Learned, MD 

 

Beyond Binary Masks: Stochastic Ensembles for Uncertainty-Aware Tumor Segmentation 

  • Andres Guerrero, UCI Center for Applied Artificial Intelligence Research 
  • Peter Chang, MD 

 

Development and Validation of Novel Two-stage Vascular Segmentation Model for Interventional Angiography 

  • Michael Kovalchick, PhD Candidate, Wayne State University 
  • Chad Klochko, MD; Hyeok Jun Lee; Hani Nasr; Hemal Dholakia; Abid Khan; Kundan Thind, PhD 

 

FewSAMNet - A Hybrid SAM-CNN Framework for Semi-Supervised Few-Shot Segmentation and Multi-Institutional Generalization 

  • Chetana Krishnan, PhD Student, University of Alabama at Birmingham 
  • Ezinwanne Onuoha; Alex Hung; Kyung H. Sung; Harrison Kim 

 

Radiomic Sampling: A Model-Free Approach to Enhance Diversity of Validation Datasets 

  • Alexander Knapp, Cincinnati Children's 
  • Jonathan Dudley, PhD; Hailong Li, PhD; Jonathan Dillman, MD, MSc; Elan Somasundaram, PhD 

 

Turning Noise into Signal: Interpretable Disagreement Profiling for Improved AI-Based 3D Tumor Segmentation 

  • Fabian Umeh, MSc, Teesside University 
  • Monika Pytlarz, MSc; MingDe Lin, PhD; Nazanin Maleki, MD; Raisa Amiruddin, MBBS; David Weiss; Khaled Bousabarah; Marina Ivory, MD, PhD; Mohamed Ghonim, MD; Mohanad Ghonim, MD; Albara Alotaibi, MD; Melisa Guelen, MD, PhD; Nathan Page, MD; Pascal Fehringer; Sedra Mhana; Bojan Petrovic, MD; Fatima Memon, MD, MPH; Basimah Albalooshy, MD; Elizabeth Schrickel, MD; Justin Cramer, MD; Michael Veronesi, MD, PhD; Spyridon Bakas, PhD; Mariam Aboian, MD, PhD 

Objectives

Define & critically evaluate emerging theories, methods, and applications in medical imaging informatics research 

Identify opportunities and challenges in translating research-driven AI and informatics advances into clinical practice

Discuss the potential impact of medical imaging AI innovations on patient outcomes, population health, and the future direction of the field

SESSION ID

1005


DATE

MON, OCT 20


TIME

2:15 PM – 3:45 PM PT


LOCATION

The Beach Room


CONTINUING EDUCATION

ASRT-RT | CAMPEP-MPCEC | SIIM IIP-CIIP